On Semicardinal Quadrature Formulae*

By I. J. Schoenberg and S. D. Silliman

Abstract

The present paper concerns the semicardinal quadrature formulae introduced in Part III of the reference [3]. These were the limiting forms of Sard's best quadrature formulae as the number of nodes increases indefinitely. Here we give a new derivation and characterization of these formulae. This derivation uses appropriate generating functions and also allows us to compute the coefficients very accurately.

Introduction. The present paper is a slightly shortened version of the MRC report [5]. Let m be a natural number and let

$$
\begin{equation*}
S_{2 m-1}^{+}=\{S(x)\} \tag{1}
\end{equation*}
$$

denote the class of functions $S(x)$ satisfying the three conditions:

$$
\begin{equation*}
S(x) \in C^{2 m-2}(\mathbf{R}) \tag{2}
\end{equation*}
$$

$$
\begin{align*}
& S(x) \in \pi_{2 m-1} \quad \text { in each of the intervals }(0,1),(1,2), \cdots \tag{3}\\
& S(x) \in \pi_{m-1} \quad \text { in the interval }(-\infty, 0) \tag{4}
\end{align*}
$$

These functions are the so-called natural semicardinal splines of degree $2 m-1$. It was shown in [3, Lemma 5, Section 9] that if

$$
\begin{equation*}
S(x) \in S_{2 m-1}^{+} \cap L_{1}\left(\mathbf{R}^{+}\right) \tag{5}
\end{equation*}
$$

then

$$
\begin{equation*}
\sum_{\nu=0}^{\infty}|S(\nu)|<\infty \tag{6}
\end{equation*}
$$

It follows that, if B_{ν} is a sequence of constants such that

$$
\begin{equation*}
B_{\nu}=O(1) \quad \text { as } \nu \rightarrow \infty, \tag{7}
\end{equation*}
$$

then the functional

$$
\begin{equation*}
R S=\int_{0}^{\infty} S(x) d x-\sum_{0}^{\infty} B_{v} S(\nu) \tag{8}
\end{equation*}
$$

is well defined for every $S(x)$ satisfying (5).
In the same paper [3, Theorem 6, Section 10], the following theorem was established.

Theorem 1. We consider a quadrature formula

$$
\begin{equation*}
\int_{0}^{\infty} f(x) d x=\sum_{0}^{\infty} B_{\nu} f(\nu)+R f \tag{9}
\end{equation*}
$$

Received February 14, 1973.
AMS (MOS) subject classifications (1970). Primary 41A15, 41A55; Secondary 41A05.

* Sponsored by the U. S. Army under Contract No. DA-31-124-ARO-D-462.
with perfectly arbitrary constant coefficients B_{ν} subject only to the condition (7). Among these formulae, there is exactly one with the property that

$$
\begin{equation*}
R f=0 \quad \text { whenever } f(x) \in S_{2 m-1}^{+} \cap L_{1}\left(\mathbf{R}^{+}\right) \tag{10}
\end{equation*}
$$

We denote this unique formula by

$$
\begin{equation*}
\int_{0}^{\infty} f(x) d x=\sum_{0}^{\infty} H_{\nu}^{(m)} f(\nu)+R f \tag{11}
\end{equation*}
$$

and call it the semicardinal quadrature formula of order m.
For the derivation of (11) by integra ing the semicardinal interpolation formula, see [3, Section 10], wherein its connection with some conjectures due to L. F. Meyers and A. Sard concerning best quadrature formulae is explained (see also [4, Lecture 8]). The purpose of the present note is the accurate computation of the values of the coefficients $H_{\nu}{ }^{(m)}$ for $m=2,3, \cdots, 7$. The tables of Sections 7 and 8 are based on computations beautifully performed by Mrs. Julia Gray, of the Computing Staff of the Mathematics Research Center, on the CDC 3600. They were done in double precision and all decimals listed should be correct, as we had anywhere from 17 to 24 correct decimals throughout. The zeros of the Euler-Frobenius polynomials of Section 7 were found by the algorithm due to D. H. Lehmer. It seems of some interest to observe that

$$
\boldsymbol{H}_{4}^{(7)}<0
$$

We also give a new proof of Theorem 1 which is simpler than the proof presented in [3, Section 10] where the main emphasis was in establishing the harder MeyersSard conjectures.

We conclude this Introduction by mentioning two further remarkable semicardinal formulae: The first is the Euler-Maclaurin formula

$$
\begin{equation*}
\int_{0}^{\infty} f(x) d x=\frac{1}{2} f(0)+f(1)+f(2)+\cdots+\sum_{r=1}^{m-1} \frac{B_{2 r}}{(2 r)!} f^{(2 r-1)}(0)+R f \tag{12}
\end{equation*}
$$

The second is the so-called complete semicardinal formula

$$
\begin{equation*}
\int_{0}^{\infty} f(x) d x=\sum_{0}^{\infty} \tilde{H}_{\nu}^{(m)} f(\nu)+\sum_{i=1}^{m-1} A_{i}^{(m)} f^{(i)}(0)+R f \tag{13}
\end{equation*}
$$

Both formulae are uniquely defined among quadrature formulae of their type (i.e., when all their terms are provided with arbitrary coefficients subject only to the condition that the coefficients of $f(\nu)$ should form a bounded sequence) by the condition of being exact, hence $R f=0$, whenever $f(x)$ is any spline of degree $2 m-1$ in the interval $[0,+\infty)$, with knots at $1,2, \cdots$, such that $f(x) \in L_{1}\left(\mathrm{R}^{+}\right)$. Among the formulae (11), (12), and (13), the formula (13) is, as a rule, the most accurate in numerical applications (after an appropriate change of step), while (11) is the least accurate. The computation of the coefficients of the complete formula (13) is the subject of Silliman's forthcoming paper [6].

The reader will see that the use of the B-splines (Section 1) transforms a fairly formidable problem into one that is within easy reach of the Euler-Laplace method of generating functions.

I. The Construction of the Semicardinal Quadrature Formula.

1. B-Splines and Euler-Frobenius Polynomials. Here we collect tools and results that have proved to be indispensable in the study of cardinal splines. Writing $x_{+}=$ $\max (0, x)$, the forward B-spline is defined by (see [1, Section 1])

$$
\begin{equation*}
Q_{m}(x)=\frac{1}{(m-1)!} \sum_{i=0}^{m}(-1)^{i}\binom{m}{i}(x-i)_{+}^{m-1} \quad(x \in \mathbf{R}) . \tag{1.1}
\end{equation*}
$$

This is a spline function of degree $m-1$, with knots at $x=0,1, \cdots, m$. The symmetry property $Q_{m}(x)=Q_{m}(m-x)$ shows that we may equivalently write it in the form

$$
\begin{equation*}
Q_{n}(x)=\frac{1}{(m-1)!} \sum_{0}^{m}(-1)^{m-\nu}\binom{m}{\nu}(\nu-x)_{+}^{m-1} . \tag{1.2}
\end{equation*}
$$

This is a frequency function. More precisely,

$$
\begin{equation*}
Q_{m}(x)>0 \quad \text { if } 0<x<m, \quad Q_{m}(x)=0 \quad \text { if } x \leqq 0 \text {, or } x \geqq m . \tag{1.3}
\end{equation*}
$$

Euler's generating function

$$
\begin{equation*}
\frac{x-1}{x-e^{2}}=\sum_{0}^{\infty} \frac{\Pi_{n}(x)}{(x-1)^{n}} \frac{z^{n}}{n!} \tag{1.4}
\end{equation*}
$$

defines the polynomial $\Pi_{n}(x)$ of degree $n-1$, called the Euler-Frobenius polynomial. For proofs of its properties described below in Lemma 1, we refer to [2, Lemma 7].

Lemma 1. (i) $\Pi_{n}(x)$ is a reciprocal monic polynomial of degree $n-1$ with integer coefficients satisfying the recurrence relation

$$
\begin{equation*}
\Pi_{n+1}(x)=(1+n x) \Pi_{n}(x)+x(1-x) \Pi_{n}^{\prime}(x) \quad\left(\Pi_{1}(x)=1\right) \tag{1.5}
\end{equation*}
$$

(ii) The identity

$$
\begin{equation*}
\Pi_{n}(x) /(1-x)^{n+1}=\sum_{0}^{\infty}(\nu+1)^{n} x^{\nu} \quad(|x|<1) \tag{1.6}
\end{equation*}
$$

holds.
(iii) The zeros λ_{ν} of $\Pi_{n}(x)$ are all simple and negative. We label them so that

$$
\begin{equation*}
\lambda_{n-1}<\lambda_{n-2}<\cdots<\lambda_{2}<\lambda_{1}<0 \tag{1.7}
\end{equation*}
$$

(iv) The identity

$$
\begin{equation*}
\Pi_{n}(x)=n!\sum_{0}^{n-1} Q_{n+1}(\nu+1) x^{\nu} \tag{1.8}
\end{equation*}
$$

holds.
The identity (1.8) shows the close relation between B-splines and Euler-Frobenius polynomials. In Section 7, the reader will find the polynomials $\Pi_{2 m-1}(x)$ and their zeros for $m=2,3,4,5,6$, and 7 .
2. A Recurrence Relation. In Sections 2, 3, and 4, we determine the Q.F. (9) satisfying conditions (7) and (10). To begin with, we ignore condition (7) and argue as follows.

We integrate the B-spline (1.2) m times so as to preserve the vanishing of the
function in $(m,+\infty)$. This condition uniquely defines the integral

$$
\begin{equation*}
\sigma(x)=\sigma_{m}(x)=\frac{1}{(2 m-1)!} \sum_{0}^{m}(-1)^{v}\binom{m}{\nu}(\nu-x)_{+}^{2 m-1} \tag{2.1}
\end{equation*}
$$

having the properties

$$
\begin{equation*}
\sigma^{(m)}(x)=Q_{m}(x), \quad \sigma(x)=0 \quad \text { if } x \geqq m \tag{2.2}
\end{equation*}
$$

Moreover, since $Q_{m}(x)=0$ if $x \leqq 0$, we conclude that

$$
\begin{equation*}
\sigma(x) \in S_{2 m-1}^{+} \cap L_{1}\left(\mathbf{R}^{+}\right) \tag{2.3}
\end{equation*}
$$

Clearly, this property of $\sigma(x)$ will remain valid if we shift its graph to the right by an integer amount, hence

$$
\begin{equation*}
\sigma(x-n) \in s_{2 m-1}^{+} \cap L_{1}\left(\mathbf{R}^{+}\right) \text {for } n=0,1,2, \cdots \tag{2.4}
\end{equation*}
$$

We conclude: The coefficients B_{v} of an arbitrary Q.F. (9), (7), that enjoys the property (10), must satisfy the relations

$$
\begin{equation*}
\int_{0}^{n+m} \sigma(x-n) d x=\sum_{\nu=0}^{n+m-1} B_{\nu} \sigma(\nu-n) \quad(n=0,1,2, \cdots) . \tag{2.5}
\end{equation*}
$$

The series on the right side indeed breaks off as indicated because of the second relation (2.2).
3. The Summation of Certain Power Series. The structure of the relations (2.5) suggests the use of generating functions for the determination of the B_{v}. Indeed, the right side of (2.5) is seen to be equal to the coefficient of x^{n+m-1} in the product of power series

$$
\begin{equation*}
\left(\sum_{0}^{\infty} B_{i} x^{i}\right)\left(\sum_{0}^{\infty} \sigma(m-1-\nu) x^{\nu}\right) \tag{3.1}
\end{equation*}
$$

(A) To simplify notations, we define the sequence $\left(s_{\nu} ; \nu=0,1, \cdots\right)$ by

$$
\begin{equation*}
s_{\nu}=(-1)^{m}(2 m-1)!\sigma(m-1-\nu)=\sum_{r=0}^{m}(-1)^{m+r}\binom{m}{r}(r-m+1+\nu)_{+}^{2 m-1} \tag{3.2}
\end{equation*}
$$

or

$$
\begin{equation*}
s_{v}=\sum_{k=0}^{m}(-1)^{k}\binom{m}{k}(\nu+1-k)_{+}^{2 m-1} \tag{3.3}
\end{equation*}
$$

Multiplying by x^{ν} and summing for $\nu=0,1, \cdots$, we obtain

$$
\begin{aligned}
\sum_{0}^{\infty} s_{\nu} x^{\nu} & =\sum_{k=0}^{m}(-1)^{k}\binom{m}{k} \sum_{\nu=0}^{\infty}(\nu+1-k)_{+}^{2 m-1} x^{\nu} \\
& =\sum_{k=0}^{m}(-1)^{k}\binom{m}{k} \sum_{\nu=0}^{\infty}(\nu+1)^{2 m-1} x^{\nu+k}
\end{aligned}
$$

Using (1.6), the right side becomes

$$
=\sum_{k=0}^{m}(-1)^{k}\binom{m}{k} x^{k} \Pi_{2 m-1}(x) /(1-x)^{2 m}
$$

and we finally obtain that

$$
\begin{equation*}
\sum_{0}^{\infty} s_{\nu} x^{\nu}=\Pi_{2 m-1}(x) /(1-x)^{m} \tag{3.4}
\end{equation*}
$$

(B) For the integrand on the left side of (2.5), we find, by (2.1),

$$
\sigma(x-n)=\frac{1}{(2 m-1)!} \sum_{\nu=0}^{m}(-1)^{\nu}\binom{m}{\nu}(\nu+n-x)_{+}^{2 m-1}
$$

whence

$$
\begin{equation*}
\int_{0}^{n+m} \sigma(x-n) d x=\frac{1}{(2 m)!} \sum_{\nu=0}^{m}(-1)^{\nu}\binom{m}{\nu}(\nu+n)_{+}^{2 m} \tag{3.5}
\end{equation*}
$$

As in (3.2), we introduce the new quantities

$$
\begin{align*}
F_{n+m-1} & =(-1)^{m}(2 m-1)!\int_{0}^{n+m} \sigma(x-n) d x \tag{3.6}\\
& =\frac{1}{2 m} \sum_{\nu=0}^{m}(-1)^{m+\nu}\binom{m}{\nu}(\nu+n)_{+}^{2 m} \quad(n \geqq 0)
\end{align*}
$$

and wish to sum the series

$$
\begin{equation*}
\sum_{n=0}^{\infty} F_{n+m-1} x^{n+m-1} \tag{3.7}
\end{equation*}
$$

From (3.6) we obtain

$$
\begin{equation*}
2 m \sum_{n=0}^{\infty} F_{n+m-1} x^{n+m-1}=\sum_{\nu=0}^{m}(-1)^{m+\nu}\binom{m}{\nu} \sum_{n=0}^{\infty}(\nu+n)_{+}^{2 m} x^{n+m-1}, \tag{3.8}
\end{equation*}
$$

while the inside sum is

$$
\begin{aligned}
\sum_{n=0}^{\infty}(\nu+n)_{+}^{2 m} x^{n+m-1} & =x^{m-\nu} \sum_{n=0}^{\infty}(n+\nu)_{+}^{2 m} x^{n+\nu-1} \\
& =x^{m-\nu} \sum_{r=0}^{\infty}(r+1)^{2 m} x^{r}-x^{m-\nu} \sum_{r=0}^{\nu-2}(r+1)^{2 m} x^{r} \\
& =x^{m-\nu} \Pi_{2 m}(x) /(1-x)^{2 m+1}-V_{\nu}(x)
\end{aligned}
$$

by (1.6). Here, $V_{\nu}(x)$ is an element of π_{m-2}. Substituting this into (3.8), we obtain

$$
\begin{equation*}
\sum_{m-1}^{\infty} F_{\nu} x^{\nu}=\frac{1}{2 m} \frac{\Pi_{2 m}(x)}{(1-x)^{m+1}}-\frac{1}{2 m} V(x), \quad \text { where } V(x) \in \pi_{m-2} \tag{3.9}
\end{equation*}
$$

Evidently, $V(x)$ is such as to cancel the first $m-1$ terms of the power series expansion of the first term on the right side.

The relations (2.5) may now be written as

$$
\begin{equation*}
F_{n}=\sum_{\nu=0}^{n} B_{\nu} s_{n-\nu} \quad \text { for } n \geqq m-1 \tag{3.10}
\end{equation*}
$$

We may here select the first $m-1$ terms

$$
\begin{equation*}
B_{0}, B_{1}, \cdots, B_{m-2} \tag{3.11}
\end{equation*}
$$

arbitrarily and determine the entire sequence (B_{ν}) recursively by (3.10). Equivalently, we may select the $m-1$ quantities $F_{0}, F_{1}, \cdots, F_{m-2}$, arbitrarily and determine (B_{ν}) from the identity

$$
\begin{equation*}
\sum_{0}^{\infty} F_{\nu} x^{\nu}=\left(\sum_{0}^{\infty} B_{\nu} x^{\nu}\right)\left(\sum_{0}^{\infty} s_{\nu} x^{\nu}\right) \tag{3.12}
\end{equation*}
$$

By (3.4) and (3.9), we have

$$
\begin{equation*}
\sum_{0}^{\infty} s_{\nu} x^{\nu}=\Pi_{2 m-1}(x) /(1-x)^{m} \tag{3.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{0}^{\infty} F_{\nu} x^{\nu}=\frac{1}{2 m} \frac{\Pi_{2 m}(x)}{(1-x)^{m+1}}-\frac{1}{2 m} U(x) \tag{3.14}
\end{equation*}
$$

where U is an arbitrary element of π_{m-2}. Solving (3.12) for $\sum_{0}^{\infty} B_{\nu} x^{\nu}$, we obtain the following:

Theorem 2. The coefficients (B_{v}) of the most general functional

$$
\begin{equation*}
R f=\int_{0}^{\infty} f(x) d x-\sum_{0}^{\infty} B_{v} f(\nu) \tag{3.15}
\end{equation*}
$$

that vanishes for the functions of the sequence

$$
\begin{equation*}
\sigma(x-n) \quad(n=0,1,2, \cdots) \tag{3.16}
\end{equation*}
$$

are the expansion coefficients of

$$
\begin{equation*}
R_{m}(x)=\sum_{0}^{\infty} B_{\nu} x^{\nu} \tag{3.17}
\end{equation*}
$$

where

$$
\begin{equation*}
R_{m}(x)=\frac{\Pi_{2 m}(x)}{2 m(1-x) \Pi_{2 m-1}(x)}-\frac{(1-x)^{m} U(x)}{2 m \Pi_{2 m-1}(x)} \tag{3.18}
\end{equation*}
$$

Here, $U(x)$ is an arbitrary element of π_{m-2}.
4. Determining the Coefficients $H_{\nu}{ }^{(m)}$. This will be done by requiring the coefficients $\left(B_{v}\right)$ of (3.17) to satisfy (7) or

$$
\begin{equation*}
B_{v}=O(1) \quad \text { as } \nu \rightarrow \infty . \tag{4.1}
\end{equation*}
$$

The order of magnitude of the B_{ν} for large ν is controlled by the location of the poles of the rational function $R_{m}(x)$. Let us first transform its expression slightly. From the recurrence relation (1.5), we find that

$$
\Pi_{2 m}(x)=(1+(2 m-1) x) \Pi_{2 m-1}(x)+x(1-x) \Pi_{2 m-1}^{\prime}(x)
$$

and, substituting into (3.18), we obtain that

$$
\begin{equation*}
R_{m}(x)=\frac{1+(2 m-1) x}{2 m(1-x)}+\frac{x \Pi_{2 m-1}^{\prime}(x)}{2 m \Pi_{2 m-1}(x)}-\frac{(1-x)^{m}}{2 m \Pi_{2 m-1}(x)} U(x) . \tag{4.2}
\end{equation*}
$$

From (1.7) we know that the $2 m-2$ zeros λ_{ν} of $\Pi_{2 m-1}(x)$ are simple and negative. Also, that $\Pi_{2 m-1}(x)$ is a reciprocal polynomial, whence the relations $\lambda_{1} \lambda_{2 m-2}=$
$\lambda_{2} \lambda_{2 m-3}=\cdots=\lambda_{m-1} \lambda_{m}=1$. It follows that these zeros satisfy the inequalities

$$
\begin{equation*}
\lambda_{2 m-2}<\cdots<\lambda_{m}<-1<\lambda_{m-1}<\cdots<\lambda_{1}<0 . \tag{4.3}
\end{equation*}
$$

Let

$$
\begin{equation*}
U(x)=a_{0}+a_{1} x+\cdots+a_{m-2} x^{m-2} \tag{4.4}
\end{equation*}
$$

It is now easy to decompose $R_{m}(x)$ into partial fractions. Observing that $R_{m}(x)$ is regular at $x=\infty$, we find that

$$
\begin{align*}
R_{m}(x)= & -\frac{1}{2 m}+\frac{1}{2 m}(-1)^{m+1} a_{m-2}+\frac{1}{1-x} \tag{4.5}\\
& +\frac{1}{2 m} \sum_{1}^{2 m-2} \frac{\lambda_{\nu}}{x-\lambda_{\nu}}-\frac{1}{2 m} \sum_{1}^{2 m-2} \frac{U\left(\lambda_{\nu}\right)\left(1-\lambda_{\nu}\right)^{m}}{\left(x-\lambda_{\nu}\right) \Pi_{2 m-1}^{\prime}\left(\lambda_{\nu}\right)}
\end{align*}
$$

From (4.3) we see that the poles $\lambda_{1}, \cdots, \lambda_{m-1}$ are inside the unit circle, while λ_{m}, \cdots, $\lambda_{2 m-2}$ are outside. Also, $x=1$ is a simple pole, by (4.5). It follows that (4.1) will hold if and only if the polynomial $U(x)$ can be so chosen that the inside poles λ_{1}, \cdots, λ_{m-1} cancel out, i.e., their residues vanish. An inspection of (4.5) shows this to be the case if and only if $U(x)$ satisfies the equations

$$
\begin{equation*}
U\left(\lambda_{\nu}\right)=\lambda_{\nu} \Pi_{2 m-1}^{\prime}\left(\lambda_{\nu}\right)\left(1-\lambda_{\nu}\right)^{-m} \quad(\nu=1, \cdots, m-1) \tag{4.6}
\end{equation*}
$$

We see that $U(x)$ exists uniquely, because (4.6) describes an ordinary Lagrange interpolation problem. This establishes

Theorem 3. There is a unique Q.F.

$$
\begin{equation*}
\int_{0}^{\infty} f(x) d x=\sum_{0}^{\infty} H_{\nu}^{(m)} f(\nu)+R f \tag{4.7}
\end{equation*}
$$

having bounded coefficients and which is exact for the sequence of functions $\sigma(x-n)$ $(n=0,1, \cdots)$. Its coefficients are given by the expansion

$$
\begin{equation*}
R_{m}(x)=\sum_{0}^{\infty} H_{\nu}^{(m)} x^{\nu} \quad(|x|<1) \tag{4.8}
\end{equation*}
$$

Here

$$
\begin{align*}
R_{m}(x)= & -\frac{1}{2 m}+\frac{1}{2 m}(-1)^{m+1} a_{m-2}+\frac{1}{1-x} \tag{4.9}\\
& +\frac{1}{2 m} \sum_{\nu=m}^{2 m-2}\left\{\lambda_{\nu}-\frac{U\left(\lambda_{\nu}\right)\left(1-\lambda_{\nu}\right)^{m}}{\Pi_{2 m-1}^{\prime}\left(\lambda_{\nu}\right)}\right\} \frac{1}{x-\lambda_{\nu}}
\end{align*}
$$

where $U(x)=a_{m-2} x^{m-2}+$ lower degree terms, is the solution of the interpolation problem (4.6).

In order to complete a proof of Theorem 1, we are still to show that the remainder functional Rf of the formula (4.7) satisfies the condition (10) of Theorem 1. For a proof of this, we refer to [5, Section 5].
5. Final Computational Details. We return to the rational function $R_{m}(x)$, defined by (4.9), that generates the $H_{\nu}{ }^{(m)}$ by (4.8). For even moderately large values of m, the zero λ_{1} is small and its reciprocal $\lambda_{2 m-2}$ is correspondingly large (e.g., for $m=7$, we find that $\lambda_{1}=-.0001251$). It is therefore important from the computational
point of view to express the right side of (4.9) in terms of the zeros $\lambda_{1}, \cdots, \lambda_{m-1}$. This is easily done by the following device: We define the new polynomials U^{*} and $\Pi_{2 m-1}$ * by setting

$$
\begin{equation*}
U^{*}(x)=x^{m-2} U\left(x^{-1}\right), \quad \Pi_{2 m-1}^{*}(x)=x^{2 m-3} \Pi_{2 m-1}^{\prime}\left(x^{-1}\right) \tag{5.1}
\end{equation*}
$$

In terms of these polynomials, (4.9) becomes

$$
\begin{equation*}
R_{m}(x)=C+\frac{1}{1-x}+\sum_{\nu=1}^{m-1} C_{\nu} \frac{1}{1-\lambda_{\nu} x} \tag{5.2}
\end{equation*}
$$

where

$$
\begin{align*}
C & =-\frac{1}{2 m}+\frac{1}{2 m}(-1)^{m+1} a_{m-2}, \tag{5.3}\\
C_{\nu} & =\frac{1}{2 m}\left\{\frac{U^{*}\left(\lambda_{\nu}\right)\left(\lambda_{\nu}-1\right)^{m}}{\Pi_{2 m-1}^{*}\left(\lambda_{\nu}\right)}-1\right\} \quad(\nu=1, \cdots, m-1) \tag{5.4}
\end{align*}
$$

Expanding the right side of (5.2) in powers of x and using (4.8), we obtain Corollary 1. The coefficients of the semicardinal Q.F. (11) have the values

$$
\begin{align*}
H_{0}^{(m)} & =C+1+\sum_{\nu=1}^{m-1} C_{\nu} \tag{5.5}\\
H_{i}^{(m)} & =1+\sum_{\nu=1}^{m-1} C_{\nu} \lambda_{\nu}^{i} \quad(j=1,2, \cdots) \tag{5.6}
\end{align*}
$$

where C and C_{ν} are given by (5.3), (5.4).
It is convenient to define

$$
\begin{equation*}
h_{0}^{(m)}=H_{0}^{(m)}-\frac{1}{2}, \quad h_{i}^{(m)}=H_{i}^{(m)}-1 \quad(j \geqq 1) \tag{5.7}
\end{equation*}
$$

and to write the Q.F. (11) in the form

$$
\begin{equation*}
\int_{0}^{\infty} f(x) d x=T+\sum_{\nu=0}^{\infty} h_{\nu}^{(m)} f(\nu)+R f \tag{5.8}
\end{equation*}
$$

where T stands for the trapezoidal sum

$$
\begin{equation*}
T=\frac{1}{2} f(0)+\sum_{1}^{\infty} f(\nu) \tag{5.9}
\end{equation*}
$$

From (5.5), (5.6) and in view of (5.7), we obtain that

$$
\begin{align*}
& h_{0}^{(m)}=C+\frac{1}{2}+\sum_{\nu=1}^{m-1} C_{\nu} \tag{5.10}\\
& h_{i}^{(m)}=\sum_{\nu=1}^{m-1} C_{\nu} \lambda_{\nu}^{i} \quad(j=1,2, \cdots) \tag{5.11}
\end{align*}
$$

6. The Case $m=2$ of Cubic Splines. We mention this case separately because the results are explicit and also because, for this case, Meyers and Sard established their conjecture. From our formulae (4.4), (4.6), (5.3) to (5.6), we easily find that

$$
\lambda_{1}=-2+\sqrt{ } 3, \quad a_{0}=-\frac{1}{3} \sqrt{ } 3, \quad C=\frac{-3+\sqrt{ } 3}{12}, \quad C_{1}=-\frac{1}{2}
$$

and therefore

$$
H_{0}^{(2)}=\frac{3+\sqrt{ } 3}{12}, \quad H_{i}^{(2)}=1-\frac{1}{2} \lambda_{1}^{j} \quad(j=1,2, \cdots) .
$$

These agree with the values given by Meyers and Sard. For references to the work of Meyers and Sard, see [3].

II. Numerical Results.

7. The Polynomials $\Pi_{2 m-1}(x)$ and Their Zeros for $m=2,3, \cdots, 7$.

$$
\begin{aligned}
& m=2: \Pi_{3}(x)=x^{2}+4 x+1 \\
& m=3: \Pi_{5}(x)=x^{4}+26 x^{3}+66 x^{2}+26 x+1 \\
& m=4: \Pi_{7}(x)=x^{6}+120 x^{5}+1191 x^{4}+2416 x^{3}+1191 x^{2}+120 x+1
\end{aligned}
$$

$$
\begin{gathered}
m=5: \Pi_{9}(x)=\sum_{0}^{8} c_{v} x^{v} \\
\hline
\end{gathered}
$$

ν	λ_{ν}			
1	-.00051	05575	34446	50206
2	-.01666	96273	66234	65610
3	-.08975	95997	93713	30994
4	-.27218	03492	94785	88569
5	-.66126	60689	00734	70691
6	-1.51225	05857	02007	
7	-3.67403	45237	66984	
8	-11.14086	96373	22505	
9	-59.98934	33746	19208	
10	-1958.64311	56756	99381	

$m=7: \mathrm{H}_{13}(\mathrm{x})=\sum_{0}^{12} c_{\nu} \mathrm{x}^{\nu}$

			$1=c_{0}=c_{12}$
		8	$178=c_{1}=c_{11}$
	1	479	$726=c_{2}=c_{10}$
	45	533	$450=c_{3}=c_{9}$
	423	281	$535=\mathrm{c}_{4}=\mathrm{c}_{8}$
1	505	621	$508=c_{5}=c_{7}$
2	275	172	$004=c_{6}$

ν	λ_{ν}					
1	-.00012	51001	13214	41871	596	
2	-.00673	80314	15244	91399	848	
3	-.04321	38667	40363	66964	776	
4	-.13890	11131	94319	43021		
5	-.33310	72329	30623	59248		
6	-.70189	42518	16807	86245		
7	-1.42471	60414	99933			
8	-3.00203	62848	38854			
9	-7.19936	63477	77381			
10	-23.14072	02231	67524			
11	-148.41129	97362	23031			
12	-7993.59788	17702	82704			

 for $m=2,3, \cdots, 7$. We have written the Q.F. (11) in the form (5.8), (5.9), where the coefficients $h_{\nu}{ }^{(m)}$ are defined by (5.7). Below we give the values of the coefficients $C, C_{1}, \cdots, C_{m-1}$, appearing in the formulae (5.10), (5.11), which were used throughout the computation. The corresponding λ_{ν}, for each m, are known from Section 7.

$$
\begin{array}{rlll}
m=2: & C & =-.10566 & 24327 \\
C_{1} & =-.50000 & 00000 & 00000
\end{array}
$$

j	$10^{9} \cdot \mathrm{~h}_{\mathrm{j}}^{(2)}$		$10^{9} \cdot h_{j}^{(2)}$		$10^{9} \cdot h_{j}^{(2)}$		$10^{9} \cdot h_{j}^{(2)}$
0	-105662433	4	-2 2577388	8	-13286	12	-68
1	$133 \quad 974 \quad 596$	5	690609	9	3560	13	18
2	-35 8988385	6	-185 048	10	-954	14	-5
3	9618943	7	$49 \quad 583$	11	256	15	1

$$
\begin{aligned}
& m=3: \quad C=-1.55683 \quad 40723 \quad 44085 \\
& C_{1}=1.61253 \quad 86058 \quad 42966 \\
& C_{2}=-.69966 \quad 76766 \quad 67689
\end{aligned}
$$

j	$10^{9} \cdot h_{j}^{(3)}$	j	$10^{9} \cdot h_{j}^{(3)}$	j	$10^{9} \cdot h_{j}^{(3)}$	j	$10^{9} \cdot h^{(3)}$
0	-143 963143	7	1919711	14	$\begin{array}{lll}-5 & 267\end{array}$	21	14
1	$231765 \quad 224$	8	-826 580	15	2268	22	-6
2	$\begin{array}{llll}-126 & 720 & 028\end{array}$	9	355905	16	-977	23	. 3
3	$55 \quad 723001$	10	-153 244	17	420	24	-1
4	-24 042963	11	65983	18	-181		
5	$10 \quad 354 \quad 462$	12	-28 411	19	78		
6	-4 4588469	13	12233	20	-34		

$$
\begin{array}{rlrl}
m=4: \quad & C & =29.79116 & 16580 \\
& 89087 \\
C_{1} & =-34.33080 & 08334 & 22275 \\
C_{2} & =5.03831 & 17952 & 59740 \\
C_{3} & =-1.16658 & 41207 & 39341
\end{array}
$$

$m=6:$	$\mathrm{C}=$	75691.58329	09095	55732
	$C_{1}=-78988.38815$		48082	40699
	$\mathrm{C}_{2}=$	3556.66826	01136	24533
	$\mathrm{C}_{3}=$	-291. 24484	63712	04503
	$\mathrm{C}_{4}=$	34.93429	00662	62594
	$\mathrm{C}_{5}=$	-4.25089	68338	22.148

J	$10^{9} \cdot \mathrm{~h}_{\mathrm{j}}{ }^{(6)}$	j	$10^{9} \cdot \mathrm{~h}_{\mathrm{j}}{ }^{(6)}$	j	$10^{9} \cdot h_{j}^{(6)}$	j	$10^{9} \cdot h_{j}^{(6)}$
0	-198 056924	14	-12 1293	28	-39 721	42	-121
1	484349.563	15	8592475	29	$26 \quad 266$	43	80
2	$\begin{array}{lll}-649 & 567 & 273\end{array}$	16	$\begin{array}{llll}-5 & 681 & 957\end{array}$	30	-17 369	44	-53
3	718914116	17	$\begin{array}{llll}3 & 757 & 298\end{array}$	31	11485	45	35
4	-639 708909	18	-2 4844577	32	-7 595	46	-23
5	486987860	19	1642967	33	5022	47	15
6	-341 365669	20	-1 1086439	34	-3 321	48	-10
7	231172876	21	718425	35	2196	49	7
8	-154 363128	22	-475 070	36	-1452	50	-4
9	102483801	23	314148	37	960	51	3
10	$\begin{array}{llll}-67 & 880 & 429\end{array}$	24	-207 735	38	-635	52	-2
11	$44917 \quad 348$	25	137368	39	420	53	1
12	$\begin{array}{llll}-29 & 710 & 573\end{array}$	26	-90 837	40	-278	54	-1
13	$19 \quad 648841$	27	$60 \quad 067$	41	184	55	1

$$
\begin{array}{rlrll}
m=7: \quad C & =-71 & 24756.13044 & 78377 & 42764 \\
C_{1} & =72 & 97768.36410 & 88111 & 56638 \\
C_{2} & =-1 & 81492.08505 & 99971 & 63019 \\
C_{3} & = & 9205.14045 & 15342 & 90528 \\
C_{4} & = & -806.75362 & 55949 & 48760 \\
C_{5} & = & 89.55157 & 21836 & 35045 \\
C_{6} & = & -8.79549 & 99208 & 94050
\end{array}
$$

j	$10^{9} \cdot h_{j}^{(7)}$	j	$10^{9} \cdot h_{j}^{(7)}$		$10^{9} \cdot h^{(7)}$	j	$10^{9} \cdot h_{j}^{(7)}$
0	-208 500822	17	21422260	34	-52 $\quad 179$	51	127
1	$560 \quad 220 \quad 481$	18	$\begin{array}{llll}-15 & 036 & 414\end{array}$	35	$36 \quad 624$	52	-89
2	-897 27922	19	$\begin{array}{lll}10 & 554 & 057\end{array}$	36	-25 706	53	63
3	$1 \begin{array}{llll}1 & 206 & 104 & 998\end{array}$	20	-7 407800	37	18043	54	-44
4	$\begin{array}{llll}-1 & 300 & 751 & 517\end{array}$	21	$5 \begin{array}{lll}5 & 199 & 544\end{array}$	38	-12 664	55	31
5	$1 \begin{array}{llll}1 & 171 & 420 & 907\end{array}$	22	-3 649533	39	8889	56	- 2.2
6	-935 088480	23	25661587	40	-6 239	57	15
7	698229096	24	-1 7797464	41	4379	58	-11
8	-504 660854	25	1261980	42	-3 074	59	7
9	$359 \quad 162 \quad 044$	26	-885 777	43	$2 \quad 157$	60	-5
10	-253 752687	27	621722	44	-1 514	61	4
11	178661845	28	-436 383	45	1063	62	-3
12	$-125 \quad 586597$	29	306295	46	-746	63	2
13	$88 \quad 210 \quad 126$	30	-214 986	47	524	64	-1
14	-61 934710	31	150898	48	-368	65	1
15	$\begin{array}{llll}43 & 478 & 456\end{array}$	32	-105 914	49	258	66	-1
16	$\begin{array}{llll}-30 & 519 & 557\end{array}$	33	$\begin{array}{ll}74 & 341\end{array}$	50	-181		

Mathematics Research Center

University of Wisconsin
Madison, Wisconsin 53706
Department of Mathematics
Cleveland State University
Cleveland, Ohio 44115

1. I. J. Schoenberg, "Cardinal interpolation and spline functions," J. Approximation Theory, v. 2, 1969, pp. 167-206. MR 41 \#2266.
2. I. J. Schoenberg, "Cardinal interpolation and spline functions. IV. The exponential Euler splines," in Linear Operators and Approximation, edited by P. L. Butzer, J.-P. Kahane and B. Sz.-Nagy, Proceedings of the Conference (Oberwolfach, Aug. 14-22, 1971), ISNM, v. 20, 1972, pp. 382-404.
3. I. J. Schoenberg, Cardinal Interpolation and Spline Functions. VI. Semi-Cardinal Interpolation and Quadrature Formulae, MRC T.S. Report \#1180, Madison, Wisconsin, 1971; J. Analyse Math. (To appear.)
4. I. J. Schoenberg, Cardinal Spline Interpolation, CBMS Regional Conference Monograph, no. 12, SIAM, Philadelphia, 1973.
5. I. J. Schoenberg \& S. D. Silliman, On Semi-Cardinal Quadrature Formula, MRC T.S. Report \#1300, Madison, Wisconsin, October 1972.
6. S. D. Silliman, "On complete semi-cardinal quadrature formulae." (To appear.)
